Atmospheric muography for imaging and monitoring tropic cyclones
- Headline
- Science
Professor Jun Matsushima of the Department of Environment Systems in the Graduate School of Frontier Sciences played a leading role in the research project.
Abstract
Large-scale solid bodies on Earth such as volcanoes and man-made pyramids have been visualized with solid earth muography, and the recently invented technique, acqueous muography, has already demonstrated its capability to visualize ocean tides and tsunami. In this work, atmospheric muography, a technique to visualize and monitor the vertical profile of tropic cyclones (TCs) is presented for the first time. The density distribution and time-dependent behavior of several TCs which had approached Kagoshima, Japan, has been investigated with muography. The resultant time-sequential images captured their warm cores, and their movements were consistent with the TC trails and barometric pressure variations observed at meteorological stations. By combining multidirectional muographic images with barometric data, we anticipate that muography will become a useful tool to monitor the three-dimensional density distribution of a targeted mesoscale convective system.
Article
Publication: Scientific Reports
Title: Atmospheric Muography for Imaging and Monitoring Tropic Cyclones
Authors: Hiroyuki K.M. Tanaka*, Jon Gluyas, Marko Holma, Jari Joutsenvaara, Pasi Kuusiniemi, Giovanni Leone, Domenico Lo Presti, Jun Matsushima, László Oláh, Sara Steigerwald, Lee F. Thompson, Ilya Usoskin, Stepan Poluianov, Dezső Varga, Yusuke Yokota1
DOI: 10.1038/s41598-022-20039-4